Regulation–Driven Product Development in The Silicone Industry Siltech Corporation **Dave Wilson**

Siltech Corporation

Regulations are common drivers for innovation Examples in the silicone world follow

Silicon

The Road from Silicon to Silicone

Properties of Silicones

Regulatory Drivers in the Silicone Field

Solvents and Volatiles

 Fluorine
 Emulsifiers
 The Green Trend

Remaining Challenges

1. Solvents and Volatiles

Reduce Volatiles and Eliminate Solvents

Reduce Volatile Siloxanes and Eliminate Silicone Solvents

ST (mN/m)

🖪 Gloss (°)

🖬 Flow (mm)

Volatile Cyclic Siloxanes

- Silicones are non-HAPs
- Extensive toxicological testing related to breast implants
- Some early results led to concern over volatile silicones D₄/D₅
- Personal Care
- Canada and Norway

Eliminate Silicone Solvent

11

Silicone Additives in Olive Oil at 1%

2. Fluorine

F-gases							
Gas	Use	Lifetime in atmosphere (half-life)	Global warming potential				
CFC-11	Early refrigerant (banned)	45 years	4,680x CO2				
CFC-12	Car air conditioning (banned)	100 years	10,720x				
CFC-113	Refrigerant, propellant (banned)	85 years	6,030x				
HCFC-22	Refrigerant, propellant	1780 years	12x				
HFC-23	Microchip etching, fire suppressant, by-product of HCFC-22 production	270 years	14,310x				
HFC-134a	Fridges, car air conditioning	14 years	1,410x				
HFO-1234yf	Replacement for HFC-134a	11 days	4x				
Tetrafluoromethane (CF4)	Biproduct of aluminium smelting	50,000 years	5,820x				
Hexafluoroethane (C2F6)	Biproduct of aluminium smelting	10,000 years	12,010x				
Nitrogen trifluoride (NF3)	Etching silicon	740 years	17,200x				
Sulphur hexafluoride (SF6)	Anti-sparking in electricity substations, magnesium production	3,200 years	22,800x				

Fluoropolymers

- Reduce length of fluorine chain
- Substitute fluorocarbons with fluorosilicones

Comparison of Selected Properties of Silicone and Fluoropolymers

Silicone

- ✓ Low surface energy
- ✓ Very good thermal flexibility
- \checkmark Good chemical resistance
- ✓ Marginal oil resistance-swelling
- ✓ Very good water resistance
- ✓ Marginal abrasion resistance
- ✓ High cost
- ✓ Effective at low use levels

Fluoropolymer

- ✓ Very low surface energy
- ✓ Marginal thermal flexibility
- ✓ Very good chemical resistance
- ✓ Very good oil resistance
- ✓ Good water resistance
- ✓ Low abrasion resistance
- ✓ Very high cost
- ✓ Effective at low use levels

Fluorosilicones

Substitution of Fluorocarbons

TECH

3. Emulsifiers (APEO- and EO-free surfactants)

- Mostly Nonyl
- Lipophilic and Hydrophilic
- Good emulsifying and dispersing properties
- Not toxic in themselves but degradation products are cited
- Greenpeace DETOX
- Can we have APEO- and EO-free too?

Silquat J2-xB series

18

Silquat J2-xB series

19

TECH

4. The Green Trend

- "Green" has come to mean non-petroleum, preferably naturally, derived.
- Silicone itself is derived from silica the main component of the earth's crust.
- There is a market need for more natural products.
- A variety of products based on castor oils, peanut, sunflower and essential oils can be made.

Castor Oil Silicones

Castor Oil Silicones

1.74% additive in SB/PU	Gloss	Static COF	Kinetic COF	Marker Resist.	Mar Resist.	Coating Appearance
Silmer ACR Di 50	92.2	0.405	0.384	7.500	7.5	Mild waves
Silmer OH Di 50	97.2	0.680	0.745	7.000	7.6	Mild waves
Silube CO Di 45	96.3	1.019	0.945	9.000	8.2	Smooth

Natural oils can be siliconised

Remaining Challenges in Coatings

Conclusion

- Regulations can foster innovation and result in better and safer chemicals
- We welcome partnerships

