Novel Cured Silicone And Silicone/Organic Hybrid **Systems And Their Properties:** Epoxies **Bob Ruckle**, Tom Seung–Tong Cheung Siltech Corporation

Epoxy Resins

- Myriad Applications
 - Adhesives
 - Aerospace
 - Coatings
 - Composites
 - Construction
 - Electronics
 - Specialty Applications
 - Transportation

SIL

TECH

Epoxy Resins

- Thermoset
- Often 2k
- Diverse Base Resins
- Cure Mechanisms
 - Amine
 - Mercaptan
 - Anhydride
 - UV Initiated Acid
- Modifiers

Epoxy Resin Properies

- Few Compromises
- Solvent Resistance
- Low Shrinkage
- Processability
- Insulative
- Adhesion
- Strength
- Relatively Brittle

Need for Flexible Epoxies

- Adhesives
- Composites
- Electronics
- Floors
- Marine
- Plastics
- Wood

Silicones

- Incompatible
- Gas Permeable
- Low Tg: -120°C
- Low Order of Toxicity
- Flexible, Compressible
- Low Surface Energy (ST, COF)
- Very Good Thermal Flexibility
- Excellent Spreading and Wetting
- Insulative (Electrical and Thermal)
- Thermal and Radical Stable (O₂, O₃, Sunlight)
- Good Chemical and Very Good Water Resistance

Reactive Silicones

- Silicones can by synthesized with a variety of reactive groups including cycloaliphatic or glycidyl epoxy moieties.
- These can be reacted as homopolymers or copolymers with other epoxy resins

Reactive Silicones as Hardeners

- ...or amine functionality
 These reactive silicones can be used as "flexible hardeners."
- The organic groups provide solubility.

Silicones Used

	# Reactive Equivalen		Organic	
Silicone	Sites	Weight	Group	
Epoxy A	1 EP/3 OH	2400	Polyether	
Epoxy B	1 EP/5 OH	8200	Polyether	
Hydroxyl A	3 OH	3800	None	
Hydroxyl B	2 OH	1980	None	
Hydroxyl C	4 OH	360	None	
Amine A	4 NH ₂	300	None	
Amine B	$1 \text{ NH}_2/3 \text{ OH}$	2550	Polyether	
Amine C	2 NH ₂	450	None	

Epoxy Silicones with Epoxy A

- Dow DER 671–X75, a commercial low MW, Epichlorohydrin/ bisphenol A system is reacted with epoxy silicone A.
- MHHPA and Imicure AM-1used to affect cure.
- Cured at 100°C for 4 hours.
- Properties are followed with Brookfield DV-III Rheometer AR-G2 or measured with Instron #1122.

Modulii

SILTECH

Hardness and Strength

Total Energy to Break/ Elongation

Properties Epoxy A

SILTECH

Epoxy Silicones with Epoxy B

- UVACure 1500, a commercial cycloaliphatic epoxy system is reacted with epoxy silicone B
- MHHPA and Imicure AM-1used to affect cure.
- Cured at 100°C for 4 hours.
- Properties are followed with Brookfield DV-III Rheometer AR-G2 or measured with Instron #1122.

Properties with Epoxy B

Amine Hardened Epoxy/ Silicones

- Dow DER 331 Epichlorohydrin/ bisphenol A commercial system is reacted with reactive silicones
- MHHPA and Imicure AM-1used to affect cure.
- Cured at ambient for 24 hours.
- Ancamine 1618 is found to be best for hardening over Ancamine 1483 or TEPA.
- Properties are followed with Brookfield DV-III Rheometer AR-G2 or measured with Instron #1122

Silicone Hardeners

Replace 20% of Ancamine 1618 (hardener):

- Silicone Amine B
- Silicone Epoxy A
- 1:1 blend of Amine B/ Epoxy A

Results

TECH

SIL

Rubber Filled Epoxy with Silicone Hardener

- Proprietary epoxy with 5-10% reactive silicones and rubber crumbs
- Mold and cure at ambient for 7 days
- -15°C and -30°C impact resistance
- Severity of fracture rated 1–10 (best)

Results

Additive	%	Shore A	Tear (N/mm)	Tensile (kPa)	Elongation (%)	– 15° C	– 30° C
Control	0	37	3.2	500	171	5	6*
Amine A	5%	45	3.6	636	114	8	7*
Amine A	10%	49	4.0	943	68	9.5	9*
Amine B	5%	27	2.1	299	191	5	5.5
Amine B	10%	25	1.8	261	164	4.5	2.5
Amine C	5%	31	2.7	354	176	4.5	3
Amine C	10%	43	3.7	543	98	9.5	8*
Hydroxyl A	10%	35	2.6	353	176	6	5
Hydroxyl B	10%	30	2.6	430	202	3	4
Hydroxyl C	10%	32	2.2	291	162	4	8.5*

Hardness and Strength

Low Temperature Impact

Conclusions

- In the Shore D systems, silicone reduces hardness.
 - Slowly up to 20%
- Strength and elongation improve and maximize at ~10-20% silicone.
- Amine more effective than epoxy

- In the Shore A system, with tetrafunctional Amine A, hardness is increased.
- Impact resistance is also increased.
- OH is not as effective for this.

