UV REACTIVE SILICONES FOR 3D PRINTING

Bob Ruckle (robert@siltech.com) Tom Seung-Tong Cheung (tom2@siltech.com) Siltech Corporation Toronto, ON Canada

Siltech Background

- Family owned/operated
- 120 Employees
- Focus on modified silicones
- > 20 kg to 30,000 kg reactors in two modern plants

Headquarters 225 Wicksteed Avenue Toronto, ON Canada M4H 1G5 +1 (416) 424-4567 www.siltech.com

Agenda

- Overview. Reactive silicones
- Silicones reacted with themselves.
 - Structure Property/ Formulating.
- Silicones reacted with other resins.
- > 3D printed examples

Experimental

- Materials are cured in a TA Instrument AR-G2 Rheometer using:
 - 150 mW/cm² LCD UV lamp at 365nm
 - UV lamp turned on at 300 sec. for 600 sec.
 - Strain Set at 0.05% with normal force control
- Properties measured with an Instron 1122 according to ASTM D412 using separately cured dumbbells.

Some dumbbells were 3D printed with a SLA type 3D printer from Full Spectrum Laser

Pegasus Touch from FSL3D

Definitions and Experimental

- G' is the storage modulus
 - The storage modulus measures the stored energy, representing the elastic portion. Similar to Young's Modulus
- G" is the loss modulus
 - The *loss modulus* measures the energy dissipated as heat, representing the viscous portion.
- Tan(delta)
 - Tangent of the phase angle. Also G"/G'. Measures dampening.

Silicone as the Resin

 Cured Acrylated Silicones provide soft and flexible elastomer with excellent release, impact resistance, elongation, temperature tolerance and feel properties.

Acrylated Silicone Types

Linear, Di-functional Extender

Illustrated with Acrylate Type

Pendant, Compatibilized

Pendant, Multi-functional Cross-Linker

Effect of Extender Concentration

Fhousands

(Pa)

As you increase the amount of a short extender the average distance between cross-links decreases.

The Storage modulus (G') increases and the hardness increases.

Effect of Extender Concentration

The Storage modulus (G') increases and the hardness increases.

increases and the hardness increases.

SILTECH

Similar Chain Lengths

When the extender and cross-linker chain lengths are similar, there is little or no change in properties.

% Linear

Similar Chain Lengths

Extender Chain Length

SII

TECH

When the extender is larger then the crosslinker chain; G' and Hardness decrease as the distance between cross-linkers is too great.

Optimized Blend

By combining a cross-linker with higher functionality and MW with a small MW extender we can get a much better basic formulation.

Optimized Blend

With this somewhat optimized formula, the addition of a similar MW extender, lowers G' and hardness less substantially.

17 🐨

Optimized Blend

We see a similar result for the hydroxy acrylate type extender.

The Storage modulus (G') and the hardness decreases with more x=100 extender.

Optimized Blend Higher MW

With this higher MW X-linker, the addition of the similar MW extender, lowers G' and hardness even less substantially.

Optimized Blend Higher MW

Similar results with Hydroxy Acrylate type

Even in the optimized system, when the extender is much larger then the cross-linker chain; G' and Hardness are lost.

Summary

- The best formulation contains, a cross-linker with a high number of cross-link sites and higher molecular weight.
- Small MW extender is needed.
- With this base higher MW extenders will lower Storage and Loss Moduli, adding flexibility.

Modifying Organic Resins

 Silicone/Organic Hybrids can give the best compromise

Compatibilizer Often Needed

22% silicone 40% CN 102Z (epoxy acrylate) 15% CN 386 (Synergist) 5% Esacure TZT 1.5% Darocur 1173 0.5% reactive defoamer 10% DTPTA 6% TRPGDA UV light, RT

Imperfect Cure

	X=10	X=50	X=100	x, y =4,8	x, y =5,30	x, y = 4,8	Control
Polyether	None	None	None	EO	EO	None	NA
G' (MPa)	8.3	18.5	11.91	9.71	11.64	20.06	20.1
G" (MPa/10)	0.71	3.19	1.88	0.82	0.91	1.42	1.56
Condition & Appearance	oily	oily, defects	oily	Cured	Cured	SI. Tacky	Cured

Uncured Silicone from Insolubility

Silicone/Epoxy Hybrid

10% silicone

67% CN 104 C75 (epoxy acrylate) 10% CN 386 5% Esacure TZT 1.5% Darocur 1173 0.5% reactive defoamer 1% DTPTA 5% TRPGDA UV light, RT

		x=15 a=8 b=0	x=45 a=15 b=15	x=40 0, a, b=0	x=10 a=10 b=0	x=20 a=10 b=4	x=25 a=10 b=0	Control	
	G' (MPa)	16.5	11.6	14	17	17	16.3	17	
	G" (MPa/10)	14.8	10.2	14.1	52.9	7.5	10.3	34.5	
ta	.n(delta)(/10 0)	9	8.8	10.2	31.1	4.51	6.35	20.3	
	Condition & Appearance	Cured		Un- cured	Cured				

Silicone/Epoxy Hybrid

0-80% silicone 0-80% CN 104 C75 13% CN 386 5% Esacure TZT 1.5% Irgacure 184 0.5% reactive defoamer UV light, RT

The Effect of Use Level

Silicone	0%	10%	20%	30%	40%	50%	60%	70%	80%
Tensile (kPa)	8335	7300	6900	6675	3435	1465	978	347	197
Elongation (%)	0.04	0.13	0.14	2.65	5.44	5.61	6.18	5.37	5.01
G' (MPa)	22.3	19.9	19.9	16.6	12.6	6.94	3.44	1.63	0.83
G" (MPa)	1.3	1.65	1.87	1.64	1.26	0.67	0.15	0.017	0.0063
tan(delta)	0.059	0.083	0.094	0.099	0.10	0.097	0.044	0.010	0.008
Film	very brittle		SI. flex.	more flexible		flexible		no integrity	
Shore D Hardness	85	70	66	57	40	20	6	2	1
Impact Resistance	0	2	4	7	8	5	5	not m	easured

One can go very high, but film integrity can be lost. 20-30% often a good range

SIL

3D Printed Data

0-40% silicone 100-60% FSL3D resin dumbbell 3D printed with ASTMD638_specimen.stl

SILTECH

3D Printed Data

Bending Distance (cm)

100-60% FSL3D resin dumbbell 3D printed with ASTMD638_specimen.stl

3D Printed Data

0-40% silicone 100-60% FSL3D resin dumbbell 3D printed with ASTMD638_specimen.stl

SILTECH

Conclusions

- Acrylated Silicones can be cured to give soft elastomers
- Or...
- Cured with Organic Acrylates to give hard elastomers with improved flexibility

