

Novel Silicones for Higher Solids Coatings

Tom Cheung, Rick Vrckovnik, Bob Ruckle Siltech Corp, Toronto, ON

Alkyl Silicones

Structural Variables

 $\Box CH_2 = CH - R$ can vary from Ethyl to C₃₂H₆₅ Variables include molecular weight, weight percent silicone, chain length of hydrocarbon Additional proprietary treatments

Alkyl Silicones in PC

- Alkyl silicones are widely used in personal care products. These have better solubility in oils and esters than pure silicone fluid and lower the surface tension of these oils providing many unique properties, such as softness, lubricity, gloss and emolliency in skin care applications.
- Recently some specific alkyl silicones have been found to dramatically reduce surface tension of hydrocarbon oils at very low use levels.

Surface Tension Reduction of 10W-30 Motor Oil

Concentration Study: ST Reduction of 10W-30 Oil

SILTECH

Surface Tension Reduction in Olive Oil

Surface Tension Reduction of Vegetable Oils

Hypothesis

- The effect of using these alkyl silicones in solvent-borne coating systems will be to lower surface tension, improve viscosity, flow and film forming properties.
- It is expected that effect will allow for higher solids and lower VOC's in the coating.

Protocol

- Alkyl silicones at 0.5% will be evaluated in three formulas at recommended and higher solids levels
- Standard tests will be run
 - Visual defects
 - Surface Tension
 - Flow
 - COF
 - Gloss
 - Abrasion Resistance

 Black High Gloss Enamel

- 60% (315 g/l)
- 65% (259 g/l)
- Nutshell Resin White
 - 89% (153 g/l)
 - 94% (87 g/l)
- Acrylic Melamine
 - 83% (224 g/l)
 - 92% (93 g/l)

Alkyl Silicones Used

Silicone

□ C-16 CR

□ C-22 CR

□C-4 Si-a

□C-4 Si-b

 $\Box C - 8 CR$

□C-2 Si

□C-6 Si

Description

Modified Siloxane: C₁₆H₃₃ Groups Modified Siloxane: C₂₂H₄₅ Groups Modified Siloxane: C₈H₁₇ Groups

Low MW Siloxane: C₂H₅ Groups

Low MW Siloxane: C₄H₉ Groups

Low MW Siloxane: C₄H₉ Groups

Low MW Siloxane: C₆H₁₃ Groups

Black Enamel Formula High Solids Higher Solids

High Solids Alkyd Resin 39.53% 42.75% Glycol Ether/Solvent Mix 28.35% 22.51% Special Black 4A 13.95% 15.09% 16.61% Filler Blend 17.96% Siltech Additives 0% 0 or 0.5% Anti-settling Agent S.Q. S.Q. S.Q. **Dispersing Agent** S.Q. S.Q. S.Q. Dryer blend S.Q. Stabilizer S.Q. S.Q. Anti-skinning Agent S.Q. 315 g/l VOC 259 g/l Solid 60% 65%

Appearance

Black Enamel	Finish
Control (315 g/l)	Smooth with 10 small fisheyes
Control (259 g/l)	Smooth with 10 small craters
C-16 CR	Smooth with 2 small craters
C-22 CR	Smooth with 2 small craters
C-8 CR	Smooth with no craters
C-2 Si	Smooth with 4 small craters
C-4 Si-a	Smooth with 4 small craters
C-4 Si-b	Smooth with 4 small craters
C-6 Si	Smooth with 4 small craters

Surface Tension

Flow @ 0.2 gm 45°, 2 min

Abrasion Resistance via % Loss in Gloss

Black Enamel Visual

Black Enamel Summary 17% Reduction in VOCs

Property	Result
Appearance	Higher solids has more defects; additives improve it to better than high solids control
ST	Returned to or below high solids control
Viscosity	Returned to high solids control
Flow	Improved directionally but not to control
Gloss	Higher solids control is better
Abrasion Resistance	Lost in higher solids; regained and more with additives

White Nutshell Topcoat

Cashewthane 1611–1Resin Siltech C-442 CE-2000 **Xylene** Ti-Pure R900 Siltech Additives 6% Manganese NAP-ALL 12% Cobalt HEX-CEM Dri-RX HF Skino #2 Total VOC (g/l)%Solids

High Solids	Higher Solids	
43.74%	45.96%	
0.86%	0.91%	
0.55%	0.58%	
10.74%	5.74%	
43.74%	45.96%	
0%	0 or 0.5%	
0.20%	0.20%	
0.06%	0.06%	
0.06%	0.06%	
0.06%	0.06%	
100.0%	100.0%	
153.2	86.7	
89%	94%	

White Nutshell Topcoat Appearance

White Nutshell	Finish
Control (153 g/l)	Smooth
Control (87 g/l)	Smooth
C-16 CR	Smooth
C-22 CR	Smooth
C-8 CR	Smooth
C-2 Si	Smooth
C-4 Si-a	Smooth
C-6 Si	Smooth
C-4 Si-b	Smooth

White Nutshell Topcoat

White Nutshell Topcoat Surface Tension

White Nutshell Topcoat Flow @ 0.2 gm 45°, 2 min

White Nutshell Topcoat Gloss

White Nutshell Topcoat Abrasion Resistance via % Loss in Gloss

White Nutshell Topcoat Visual

TECH

White Nutshell Summary

43% Reduction in VOCs

Property	Result
Appearance	All have no defects
ST	Improved directionally but not to control
Viscosity	Increased; additives have no effect
Flow	Reduced; additives do not return it
Gloss	Reduced; additives do not return it
Abrasion Resistance	Lost in higher solids; regained and more with additives

Joncryl 504 Solvent mix **CE-2000** Siltech Additives Ti-Pure R-900 Joncryl 504 Luwipal 066 Nacure 2500 Total VOC (g/l)%Solids

nigh sonus	Figher solids
19.94%	21.60%
17.04%	6.56%
0.50%	0.22%
0%	0 or 0.5%
32.41%	35.10%
16.94%	18.45%
12.67%	17.12%
0.50%	0.54%
100.0%	100.0%
224.3	91.7
83%	92%

Iliahar Calida

Appearance

Gloss White	Finish (92 g/l)
Control (224 g/l)	Smooth with 5 small fish eyes
Control (92 g/l)	Smooth with 10 fisheyes
C-16 CR	Smooth with 50 fisheyes
C-22 CR	Smooth with 20 fisheyes
C-8 CR	Smooth with no fisheye
C-2 Si	Smooth with 5 fisheyes
C-4 Si-a	Smooth with 15 fisheyes
C-6 Si	Smooth with 50 fisheyes
C-4 Si-b	Smooth with 3 fisheyes

Acrylic Melamine Viscosity

SILTECH

Surface Tension

SILTECH

Gloss

Abrasion Resistance by % Loss in Gloss

Acrylic Melamine Visual

58% Reduction in VOCs

Property	Result
Appearance	Higher solids has more defects; additives improve it to better than high solids control
ST	Improved to control
Viscosity	Improved directionally but not to control
Flow	Improved directionally but not to control
Gloss	Higher solids control is better
Abrasion Resistance	Lost in higher solids; regained and more with additives

Conclusions

- Abrasion Resistance is improved over the high solids control in 3/3 cases.
- Surface tension of the higher solids formula is returned to that of the high solids control in 2/3 cases and improved directionally in the 3rd.
- Flow is completely returned in one formula and is improved directionally in another.

Conclusions

- Viscosity of the higher solids formula is returned in only the black enamel case.
- In most cases, the additives provide directional improvement in properties and appearance is better.
- The 48% and 58% reduction systems may simply be too much reduction.
- More work is needed to be conclusive but these early results are encouraging.

We Partner

