

Properties of Silicone Modified Coatings Films

Tom Cheung, **Bob Ruckle** Siltech Corp Toronto, ON, Canada

Summary

Reactive silicones are available with differing reactive groups including acrylate and cycloaliphatic epoxy. Using various resins and multiple testing procedures as examples, this work summarizes what to expect when you incorporate these silicones into your films.

Testing

Test Panel Preparation: 1 ml is drawn down on a white Leneta paper with wire-wound rod #10.

Coefficient of Friction (CoF /Slip): A ChemInstruments Coefficient of Friction -500 measures static and kinetic coefficients of friction directly. The slip rating is determined by averaging % change of CoF with weighting factors against the control in the same series and normalizing to 10 with all the test samples.

Gloss: Measured with BYK-Gardner 60° micro-glossmeter.

Peel Force Measurements: measured by peeling 6``of Intertape 6100 with ChemInstruments 500 at an angle of 180° and peel rate of 60 cm/min. Report an avg of ten in gm/cm².

Testing (cont)

Mar Resistance: measured using a Sutherland 2000 Ink Rub Tester - Dry Rub method with the following settings: 500 rubs, 84 rpm stroke speed for all sample sets using a 4 lb test block and a 2"x 4" nylon scrubbing pad. Gloss is measured immediately after rubbing for each panel. Record the loss of gloss(%) before and after rubs and a subjective rating from 0 to 10 where 10 is the best and indicates no visible effect.

Stain Resistance: Stains are applied using 1-5 drops/mark near the centre portion the panel, conditioned at room temperature for 1 hour then rinsed with tap water for 1 minute and wiped with an IPA saturated cotton swab. The subjective ratings are obtained from the stains remaining on the panels from 1 to 10 where 10 is best and indicates no remaining stain.

Testing (cont)

Impact Resistance The panel to be tested is placed coated side down on the top of a protective paper on a flat steel plate with rubber pad on the bottom. A steel rod with a 1 cm diameter round steel ball attached at the end of the rod is placed on the back side of the coating surface. A 700 gram weight drops vertically along the rod from a distance of 23 cm above the coating surface. The subjective ratings are obtained by visual comparison of impact damage on the panels for each series from 1 to 10 where 10 is best and indicates no cracking or breaking of the film.

Proof of Concept: Cured Gel

Component	Name	Level
Organic Resin	UVACURE Epoxy Resin	42-16%
Anhydride Curative	MHHPA	58-24%
Cycloaliphatic Epoxy Silicone	EPENPL35	0-60%
Catalyst	AM-1	0.06-0.1%

- EPENPL35 has polyalkyleneoxide groups for compatibility as well as cycloaliphatic epoxy groups for reactivity.
- The rheological data and mechanical properties are obtained directly from Brookfield DV-III Rheometer AR-G2 and Instron Model #1122 using the following cure conditions: 110°C and Cure Time: 4 Hours.

- Increasing silicone decreases hardness slightly.
- Toughness maximizes at 40%.
- Tensile strength spikes at 20%

Hardness

Compatibility is Important

- Outcomes of incompatibility can be unstable formulas, slow reaction, oily films, defects and very low CoF
- A modified silicone with organic groups can solubilize the silicone
- With inclusion of silicone, films become:
 more flexible
 - more slippery

Acrylate Functional

Component	Level
ACR Reactive Silicones	Various 🖊
Use level (%)	22.0%
Epoxy Acrylate Resin	CN102Z
Use level (%)	40.0%
Synergist CN386	15.0%
Photoinitiator Esacure TZT	5.0%
Photoinitiator Darocur 1173	1.5%
Reactive Defoamer	0.5%
Reactive Diluent SR 355 DTPTA	10%
Reactive Diluent SR 306 TRPGDA	6%

Results

- Most show lower moduli indicating reaction
- Only the solubilized materials completely cure

Slip Properties

- Peel force and CoF are lowered.
- Extremely low when incompletely reacted

Other Typical Effects

- Flexibility increases
- CoF decreases
- Stain resistance increases
- Mar resistance increases

- Many of these are improved over control
- The incompletely cured materials give the most improvement.

Acrylate Functional

Component	Lever	
ACR Reactive Silicones	Various	
Use level (%)	10.0%	
Epoxy Acrylate Resin	CN104C75	
Use level (%)	67%	
Synergist CN386	10.0%	
Photoinitiator Escacure TZT	5.0%	
Photoinitiator Darocur 1173	1.5%	
Reactive Defoamer	0.5%	
Reactive diluent SR 355 DTPTA	1%	
Reactive diluent SR 306 TRPGDA	5%	

Silicones Used

Variation	LINES15	LINPL45	LINX400	LINEL10	LINPS20	LINEL25
	Linear,	Linear,	Linear,	Linear,	Linear,	Linear,
Silicone	small	large	v. lg.	small	medium	medium
		EO/PO		EO	EO/PO	EO
Polyether	EO Small	Large	None	Large	Small	Large
Log MW	3.34	3.83	4.48	3.3	3.54	3.49
Viscosity (cps)	160	2400	2400	160	210	330

Results

System I Series B	LINES15	LINPL45	LINX400	LINEL10	LINPS20	LINEL25	Control
Storage Modulus G' (MPa)	16.5	11.6	14	17	17	16.3	17
Loss Modulus G" (MPa/10)	14.8	10.2	14.1	52.9	7.5	10.3	34.5
tan(delta)(/100)	9	8.8	10.19	31.1	4.51	6.35	20.3
Cure Condition & Appearance	Cu	red (Un- cured)	Cu	red	

- All give lower moduli except LINEL10
- All cure except non-polyether LINX400

Slip Properties

- The peel force, slip and CoF are improved.
- LINX 400 best incompatible
- The best results of the completely cured systems belong to the medium chain length silicones.
 - There is improvement in mar resistance.

Stain Resistance

- There is general improvement in stain resistance.
- LINEL10 and LINPS20 are consistently worst
- The LINX400 gives the best stain resistance perhaps due to incompletely cured silicone.

SB PU

2K SB PU formulation A	Weight
Desmophen A870 BA	164
Desmophen 670A-80	109.6
Dabco T-12	0.352
n-Butyl acetate	19.3
Glycol ether PM acetate	25.4
Ester EEP	30.9
2K SB PU formulation B	Weight
Desmodur N-3390 BA/SN	120.2

• The NCO/Polyol mole ratio is1:1

• 1%-10% of silicone is pre-mixed with Part A

Results of SB PU

10% of 1° OH	Close	Static	Kinetic	Stain	Mar	Impact	
Silicone	01055	CoF	CoF	Resist	Resist	Resist	
Linear 10	85.3	1.089	1.065	10.0	3.3	Improved	
Linear 25	85.1	0.966	0.953	7.8	5.6	Improved	
Linear 50	87.5	0.729	0.730	6.7	7.8	Improved	
Linear 100	76.6	0.626	0.543	4.4	8.9	Improved	
Pendant 10 xl	76.0	1.607	2.117	5.6	4.4	Improved	
Pendant 3 xl	74.8	0.558	0.485	8.9	7.8	Improved	
Control	94.0	2.154	2.489	0.0	0.0	Poor	

- Gloss drop shows these are incompatible
- Impact resist increase shows incorporation
- CoF decreases
- Mar resist increases
- Stain resist increases

WB PU

2K WB PU formulation A	Weight
Bayhydrol A145	145.97
Surfynol 104 DPM	3.48
Borchigel PW25	0.52
Distilled Water	62.16
2K WB PU formulation B	Weight
Bayhydur XP7165	156
Bayhydur XPLS2150/1	55.8
Exxate 600	32

• The NCO/Polyol mole ratio is1.5:1

• 1%-10% of silicone is pre-mixed with Part A

WB PU

1% in WB/PU	Gloss	Static COF	Kinetic COF	Stain Resist	Mar Resist	Appearance	lmpact Resist
Linear 10 w/EO	89.4	1.998	1.846	7	7.8	Smooth	Low
Linear 50 w/ EOPO	89.3	1.937	1.684	7	7.4	Smooth	Low
Control	89.5	2.446	2.497	0	0	pinholes	Low

- Gloss shows compatible
- No effect on impact resistance (1% too low)
- CoF decreases
- Mar resist increases
- Stain resist increases

Use Level Effect

- One can go very high, but film integrity can be lost
- For some properties 1% is adequate.
 Slip
 - Release
 - Mar Resistance
- Other properties require more silicone
 - Impact Resistance
 - Stain Resistance

Use Level Study

Component	Amount
ACR Reactive Silicone	PENES8
Use level (%)	0% - 80%
Epoxy Acrylate Resin	CN104C75
Use level (%)	80% - 0%
Synergist CN386	13.0%
Photoinitiator Escacure TZT	5.0%
Photoinitiator Darocur 1173	1.5%
Reactive Defoamer	0.5%

- "PEN ES8" is a small acrylate functional, silicone with an average of two reactive groups and modified with polyethyleneoxide for solubility
- Reactive defoamer is an insoluble acrylated silicone

Results: Broad View

	Control	Α	В
Silicone PEN ES8	0.0%	30.0%	60.0%
Gloss	99.0	93.4	83.7
Static CoF	0.615	0.665	2.111
Kinetic CoF	0.551	0.531	2.367
Peel Release (gm/cm ²)	179	147	7.2
Impact Resistance	0	8	10
Cured Conditions & Appearance	Cured,	Cured, rubbery	

- Highly compatible: completely reacts
- Release and flexibility as more silicone is used.
- 60% silicone gives very strong release properties.
- In this example, CoF increases with silicone content.

Results: Closer Look

PENES8	0%	10%	20%	30%	40%	50%	60%	70%	80%
Viscosity (cPs)	8059	4361	2256	1157	569	284	152	95	95
Tensile (kPa)	8335	7300	6900	6675	3435	1465	978	347	197
Elongation (%)	0.04	0.13	0.14	2.65	5.44	5.61	6.18	5.37	5.01
G' (MPa)	22.3	19.9	19.9	16.6	12.6	6.94	3.44	1.63	0.83
G'' (MPa)	1.3	1.65	1.87	1.64	1.26	0.67	0.15	0.017	0.0063
tan(delta)	0.059	0.083	0.094	0.099	0.10	0.097	0.044	0.010	0.008
Film	very bri	ttle	SI. flexible	more flo	exible	flexible		no inte	grity
Shore D Hardness	85	70	66	57	40	20	6	2	1
Impact Resistance	0	2	4	7	8	5	5	not me	asured

- Flexibility and elongation properties maximize at 40– 60% incorporation of silicone in organic.
- The tensile strength, storage modulus are <u>approximately linear with percentage of silicone.</u>

Flexibility

 Flexibility and elongation properties maximize at 40– 60% incorporation of silicone in organic.

Viscosity and Tensile

 The tensile strength, storage modulus and hardness have linear relationships with percentage of silicone.

Cross Link Density

 More reactive groups on the silicone seems to increase stain resistance and slip properties

UV Cured Cycloaliphatic Epoxy

Component	Level	
Types of epoxy silicones	Polyether modified	
Use level of epoxy silicones (wt %)	1% / 20%	
UVA Cure 1500 resin	89 / 72%	
CAPA 3041 Multifunctional Polyol	9% / 7%	
UV 9380C Photoinitiator	1%	

Silicone Variations

	PEN 1 EPC	PEN 2 EPC	PEN 3 EPC	ELINEL25	ELINPL45
	Pendant,	Pendant,	Pendant,	Linear,	Linear,
Silicone	med.	med.	med.	med.	lg.
	EO/PO	EO/PO	EO/PO	EO	EO/PO
Polyether	large	large	large	large	large
# epoxy	1	2	3	2	2
Log MW	3.93	3.87	3.80	3.42	3.72
Viscosity (cps)	798	1000	1010	255	1205

Results

	PEN 1 EPC	PEN 2 EPC	PEN 3 EPC	ELINEL25	ELINPL45	Control
tan(delta) (20%)	0.66	0.51	0.28	0.34	0.31	0.68
G* Pa E+7 (20%)	0.51	0.74	1.09	1.31	0.87	3.84
Cure Condition & Appearance	Smooth		Fairly Smooth	Fairly Smooth, Greasy	Smooth	

- These polyether functional epoxy silicones react into the coating
- ELINPL45 is borderline

Slip Properties

- The slip and peel release improve most with linear.
- The improvement is not much greater in the 20% series.
- Only a small improvement for multifunctional materials.
- Crosslinking increases CoF slightly.

Impact Resistance

- There is no change in impact resistance at 1% loading.
- The 20% loading shows a strong effect.
- Increases as the number of epoxy groups increases

Stain Resistance

- Stain resistance is improved over control
- Improved with crosslinking
- 20% level sometimes is not as good in this system

Stain Resistance

- Stain resistance is improved over control
- Often improved with crosslinking
- 20% level sometimes is not as good in this system

Conclusions

- Reactive silicones become part of the film. Without solubilizing groups they do not fully react.
 - Outcomes of incompatibility can be unstable formulas, slow reaction, oily films, defects and very low CoF
- Reactive silicones improve release, slip and CoF at 1% incorporation.
 - In most cases these properties continue to improve with more silicone.
 - Linear di-functional materials are usually better than pendant.
 - Increased cross-linked density changes this slightly

Conclusions

- Mar resistance is seen at 1% but may not be improved at higher levels.
- Impact resistance and moduli show increased flexibility.
 - Higher use levels are needed here with 1% showing little or no effect
- Stain resistance is seen with most reactive silicones across multiple stains and is sometimes increased at higher use levels.
 - High molecular weight and di-functional architecture often give the best stain resistance.
 - Increasing the number of reactive sites improves this.

THANK YOU

